ÁLGEBRA LINEAR I


Um casal faz uma poupança doméstica anual para a viagem de férias. Eles desejam guardar a quantia de R$1000,00 (um mil reais) utilizando cédulas de dois, dez e vinte reais. Para utilizarem o “porquinho” que eles têm em casa podem guardar um total de 92 cédulas. Outro detalhe é o fato que as quantidades de cédulas de dois e de vinte reais sejam iguais. Neste caso, assinale a alternativa CORRETA que contém a soma da quantidade de cédulas de cada tipo (de dois reais, dez e vinte) que eles deverão guardar.


92
65
70
82
50

Seja dado o sistema de equações lineares  , em relação a este sistema de equações é CORRETO afirmar que:


Este sistema é considerado normal, já que  .
O sistema não é normal pois o determinante da matriz dos coeficientes não existe.
O sistema não é normal pois os valores das somas  e    são divergentes.
Este sistema é considerado normal, pois o número de linhas e colunas da matriz dos coeficientes são iguais.
O sistema não é normal pois o número de equações é igual a 3 e o número de incógnitas (variáveis) é igual a 5.

Considerando o sistema de equação linear   . Assinale a alternativa CORRETA, cujo par ordenado pode ser considerado solução para o sistema.











Considerando que a matriz     é uma matriz triangular, determinando 

o valor de , obtemos como conjunto solução 

Assinale a alternativa CORRETA que representa este conjunto.






Seja uma matriz x dada por  . Assinale a alternativa que indica a escrita CORRETA da matriz :


 
 

 
 

Resolva o sistema de equações lineares   utilizando o método de eliminação de Gauss (Escalonamento), e em seguida assinale a alternativa CORRETA que representa o conjunto solução deste sistema.


Sistema possível e determinado, logo,
Sistema impossível, logo a solução é  
Sistema possível e indeterminado, logo, solução parametrizada
Sistema possível e indeterminado, logo, solução parametrizada 
Sistema impossível, logo, solução vazia.

Considerando o sistema de equações lineares    Assinale a alternativa CORRETA cuja terna ordenada representa uma solução possível para o sistema.







 
 
 
 

Durante o mês de dezembro a loja JAM Ltda  faz uma organização dos artigos de decoração para promoções. Assim, um vaso e uma cesta de bambú custam juntos R$70,00 (setenta reais). Dois vasos mais um tapete custam R$ 105,00 e a diferença de preços entre a cesta de bambú e o tapete, nessa ordem, é R$ 5,00.  Determine o valor de cada produto especificado anteriormente, e em seguida assinale a alternativa CORRETA

Dica: Para tanto, você deverá montar um sistema de equações lineares e resolver o referido sistema.