ÁLGEBRA LINEAR II
Sejam V um espaço vetorial e A = { v1, v2, ..., vn} está contido em V.
A equação a1v1 + a2v2 + ... + anvn = 0, admite, pelo menos, uma solução, chamada de solução trivial: a1 = a2 = a3 = 0
Diz-se que o conjunto A é linearmente independente (LI) quando a equação admitir apenas a solução trivial. E se existirem soluções diferentes de zero, diz-se que o conjunto A é linearmente dependente.
Com base nessas informações verifique se o espaço vetorial V = IR2, os vetores v1 = (2, 3) e v2 = (- 4,- 6), formam um conjunto: