ÁLGEBRA MODERNA II
O conceito de congruência, bem como o conceito de divisibilidade admite algumas propriedades elementares, notação através da qual essa noção tornou um dos instrumentos mais poderosos da teoria dos números, portanto leia as afirmativas a seguir analisando se são falsas ou verdadeiras.
( ) . Se a ≡ b (mód. m) e c ≡ d (mód. m), então (a + c) ≡ ( b + d) (mód. m).
( ) . Se a ≡ b (mod m), então a.d ≡ b.d (mod m).
( ) . Se a ≡ b (mód. m) e c ≡ d (mód. m), então (a - c) ≡ (b - d) (mód. m).
( ) . Dois inteiros quaisquer são sempre congruentes módulo 3.
( ) . Se a.c ≡ b.c (mód. m) e mdc ( c, m) = d > 0, então a ≡ b (mód. m/ d).
Assinale a alternativa correta.